Effect of self-interaction on the phase diagram of a Gibbs-like measure derived by a reversible Probabilistic Cellular Automata

Journal Article (2014)
Author(s)

Emilio Cirillo (Sapienza University of Rome)

pierre yves Louis (Université de Poitiers)

W.M. Ruszel (TU Delft - Applied Probability)

Cristian Spitoni (Universiteit Utrecht)

Research Group
Applied Probability
DOI related publication
https://doi.org/10.1016/j.chaos.2013.12.001
More Info
expand_more
Publication Year
2014
Language
English
Research Group
Applied Probability
Volume number
64
Pages (from-to)
36-47

Abstract

Cellular Automata are discrete-time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov chains on lattice with finite single-cell states whose distinguishing feature is the parallel character of the updating rule. We study the ground states of the Hamiltonian and the low-temperature phase diagram of the related Gibbs measure naturally associated with a class of reversible PCA, called the cross PCA. In such a model the updating rule of a cell depends indeed only on the status of the five cells forming a cross centered at the original cell itself. In particular, it depends on the value of the center spin (self-interaction). The goal of the paper is that of investigating the role played by the self-interaction parameter in connection with the ground states of the Hamiltonian and the low-temperature phase diagram of the Gibbs measure associated with this particular PCA.

No files available

Metadata only record. There are no files for this record.