Analyzing Emerging Challenges for Data-Driven Predictive Aircraft Maintenance Using Agent-Based Modeling and Hazard Identification
Juseong Lee (Air Transport & Operations)
M. Mitici (Universiteit Utrecht)
Henk A.P. Blom (Air Transport & Operations)
Pierre Bieber (Office National d'Etudes et de Recherches Aerospatiales)
Floris Freeman (KLM Royal Dutch Airlines)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The increasing use of on-board sensor monitoring and data-driven algorithms has stimulated the recent shift to data-driven predictive maintenance for aircraft. This paper discusses emerging challenges for data-driven predictive aircraft maintenance. We identify new hazards associated with the introduction of data-driven technologies into aircraft maintenance using a structured brainstorming conducted with a panel of maintenance experts. This brainstorming is facilitated by a prior modeling of the aircraft maintenance process as an agent-based model. As a result, we identify 20 hazards associated with data-driven predictive aircraft maintenance. We validate these hazards in the context of maintenance-related aircraft incidents that occurred between 2008 and 2013. Based on our findings, the main challenges identified for data-driven predictive maintenance are: (i) improving the reliability of the condition monitoring systems and diagnostics/prognostics algorithms, (ii) ensuring timely and accurate communication between the agents, and (iii) building the stakeholders’ trust in the new data-driven technologies.