Observation of Electron Coherence and Fabry-Perot Standing Waves at a Graphene Edge

More Info
expand_more

Abstract

Electron surface states in solids are typically confined to the outermost atomic layers and, due to surface disorder, have negligible impact on electronic transport. Here, we demonstrate a very different behavior for surface states in graphene. We probe the wavelike character of these states by Fabry-Perot (FP) interferometry and find that, in contrast to theoretical predictions, these states can propagate ballistically over micron-scale distances. This is achieved by embedding a graphene resonator formed by gate-defined p-n junctions within a graphene superconductor-normal-superconductor structure. By combining superconducting Aharanov-Bohm interferometry with Fourier methods, we visualize spatially resolved current flow and image FP resonances due to p-n-p cavity modes. The coherence of the standing-wave edge states is revealed by observing a new family of FP resonances, which coexist with the bulk resonances. The edge resonances have periodicity distinct from that of the bulk states manifest in a repeated spatial redistribution of current on and off the FP resonances. This behavior is accompanied by a modulation of the multiple Andreev reflection amplitude on-and-off resonance, indicating that electrons propagate ballistically in a fully coherent fashion. These results, which were not anticipated by theory, provide a practical route to developing electron analog of optical FP resonators at the graphene edge.