Experimental investigation of wave interaction with a thin floating sheet

Journal Article (2021)
Author(s)

Sebastian Schreier (TU Delft - Ship Hydromechanics and Structures)

Gunnar Jacobi (TU Delft - Ship Hydromechanics and Structures)

Research Group
Ship Hydromechanics and Structures
DOI related publication
https://doi.org/10.17736/ijope.2021.mk76
More Info
expand_more
Publication Year
2021
Language
English
Research Group
Ship Hydromechanics and Structures
Issue number
4
Volume number
31
Pages (from-to)
435-444

Abstract

Very flexible floating structures have been proposed for offshore floating photovoltaics installation. Characterized by having structural lengths much longer than wavelengths, small thickness, and low bending stiffness, these structures are prone to large vertical deflections and strong hydroelastic interactions. Experimental information on these structures is scarce. In this study, we employed digital image correlation (DIC) to investigate the hydroelastic interaction of a flexible floating sheet with a length-to-height ratio of 1,000 in regular long-crested head waves. The wavelength was one-tenth and one-fifth of the structure length, with a wave steepness of 0.04. The repeatability of wave conditions and measurement results was demonstrated, and measurement errors were quantified. Surface elevations showed that the sheet followed a local wave elevation in long waves. In shorter waves, strong hydroelastic interactions led to wave lengthening underneath the floating structure and three-dimensional (3D) effects across the structure width. Wave lengthening agreed well with prediction from the hydroelastic dispersion relation. Observed 3D effects necessitate further research into the possible influence of viscoelastic effects. It was shown that the DIC technique is suitable to measure flexible floating structures in waves with low error and good repeatability. Experimental data are publicly available.

No files available

Metadata only record. There are no files for this record.