A uniform central limit theorem and efficiency for deconvolution estimators

Journal Article (2012)
Author(s)

J. Söhl (Humboldt-Universitat zu Berlin)

Mathias Trabs (Humboldt-Universitat zu Berlin)

Affiliation
External organisation
DOI related publication
https://doi.org/10.1214/12-EJS757
More Info
expand_more
Publication Year
2012
Language
English
Affiliation
External organisation
Volume number
6
Pages (from-to)
2486-2518

Abstract

We estimate linear functionals in the classical deconvolution problem by kernel estimators. We obtain a uniform central limit theorem with √n-rate on the assumption that the smoothness of the functionals is larger than the ill-posedness of the problem, which is given by the polynomial decay rate of the characteristic function of the error. The limit distribution is a generalized Brownian bridge with a covariance structure that depends on the characteristic function of the error and on the functionals. The proposed estimators are optimal in the sense of semiparametric efficiency. The class of linear functionals is wide enough to incorporate the estimation of distribution functions. The proofs are based on smoothed empirical processes and mapping properties of the deconvolution operator.

No files available

Metadata only record. There are no files for this record.