Nonlinearity of transparent SNS weak links decreases sharply with length
V. Fatemi (Cornell University)
P. D. Kurilovich (Yale University)
A.R. Akhmerov (TU Delft - QN/Akhmerov Group)
Bernard Van Heck (Sapienza University of Rome)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Superconductor-normal material-superconductor (SNS) junctions are being integrated into microwave circuits for fundamental and applied research goals. The short junction limit is a common simplifying assumption for experiments with SNS junctions, but this limit constrains how small the nonlinearity of the microwave circuit can be. Here, we show that a finite length of the weak link strongly suppresses the nonlinearity compared to its zero-length limit -- the suppression can be up to a factor of ten even when the length remains shorter than the induced coherence length. We tie this behavior to the nonanalytic dependence of nonlinearity on length, which the critical current does not exhibit. Further, we identify additional experimentally observable consequences of nonzero length, and we conjecture that anharmonicity is bounded between zero and a maximally negative value for any non-interacting Josephson junction in the presence of time-reversal symmetry. We promote SNS junction length as a useful parameter for designing weakly nonlinear microwave circuits.