Martingale decompositions and weak differential subordination in UMD Banach spaces
I.S. Yaroslavtsev (TU Delft - Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper, we consider Meyer–Yoeurp decompositions for UMD Banach space-valued martingales. Namely, we prove that X is a UMD Banach space if and only if for any fixed p ∈ (1, ∞), any X-valued Lp-martingale M has a unique decomposition M = Md + Mc such that Md is a purely discontinuous martingale, Mc is a continuous martingale, M0 c = 0 and EM∞ d p + EM∞ c p ≤ cp,XEM∞ p. An analogous assertion is shown for the Yoeurp decomposition of a purely discontinuous martingales into a sum of a quasi-left continuous martingale and a martingale with accessible jumps. As an application, we show that X is a UMD Banach space if and only if for any fixed p ∈ (1, ∞) and for all X-valued martingales M and N such that N is weakly differentially subordinated to M, one has the estimate EN∞ p ≤ Cp,XEM∞ p