Mass-conserving diffusion-based dynamics on graphs

Journal Article (2021)
Author(s)

Jeremy Budd (TU Delft - Mathematical Physics)

Y. van Gennip (TU Delft - Mathematical Physics)

Research Group
Mathematical Physics
Copyright
© 2021 J.M. Budd, Y. van Gennip
DOI related publication
https://doi.org/10.1017/S0956792521000061
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 J.M. Budd, Y. van Gennip
Related content
Research Group
Mathematical Physics
Issue number
3
Volume number
33 (2022)
Pages (from-to)
423–471
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

An emerging technique in image segmentation, semi-supervised learning and general classification problems concerns the use of phase-separating flows defined on finite graphs. This technique was pioneered in Bertozzi and Flenner (2012, Multiscale Modeling and Simulation 10(3), 1090-1118), which used the Allen-Cahn flow on a graph, and was then extended in Merkurjev et al. (2013, SIAM J. Imaging Sci. 6(4), 1903-1930) using instead the Merriman-Bence-Osher (MBO) scheme on a graph. In previous work by the authors, Budd and Van Gennip (2020, SIAM J. Math. Anal. 52(5), 4101-4139), we gave a theoretical justification for this use of the MBO scheme in place of Allen-Cahn flow, showing that the MBO scheme is a special case of a 'semi-discrete' numerical scheme for Allen-Cahn flow. In this paper, we extend this earlier work, showing that this link via the semi-discrete scheme is robust to passing to the mass-conserving case. Inspired by Rubinstein and Sternberg (1992, IMA J. Appl. Math. 48, 249-264), we define a mass-conserving Allen-Cahn equation on a graph. Then, with the help of the tools of convex optimisation, we show that our earlier machinery can be applied to derive the mass-conserving MBO scheme on a graph as a special case of a semi-discrete scheme for mass-conserving Allen-Cahn. We give a theoretical analysis of this flow and scheme, proving various desired properties like existence and uniqueness of the flow and convergence of the scheme, and also show that the semi-discrete scheme yields a choice function for solutions to the mass-conserving MBO scheme.