Volumetric Ultrasound Localization Microscopy
Louise Denis (Sorbonne Université)
Georges Chabouh (Sorbonne Université)
B.G. Heiles (California Institute of Technology, TU Delft - ImPhys/Maresca group)
Olivier Couture (Sorbonne Université)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Super-resolution ultrasound (SRUS) has evolved significantly with the advent of Ultrasound Localization Microscopy (ULM). This technique enables sub-wavelength resolution imaging using microbubble contrast agents. Initially confined to 2D imaging, ULM has progressed towards volumetric approaches, allowing for comprehensive three-dimensional visualization of microvascular networks. This review explores the technological advancements and challenges associated with volumetric ULM, focusing on key aspects such as transducer design, acquisition speed, data processing algorithms, or integration into clinical practice. We discuss the limitations of traditional 2D ULM, including dependency on precise imaging plane selection and compromised resolution in microvasculature quantification. In contrast, volumetric ULM offers enhanced spatial resolution and allowed motion correction in all direction, promising transformative insights into microvascular pathophysiology. By examining current research and future directions, this review highlights the potential of volumetric ULM to contribute significantly to diagnostic across various medical conditions, including cancers, arteriosclerosis, strokes, diabetes, and neurodegenerative diseases.