Lyapunov event-triggered stabilization with a known convergence rate
Anton V. Proskurnikov (Russian Academy of Sciences, Politecnico di Torino)
M. Mazo Espinosa (TU Delft - Team Tamas Keviczky)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
A constructive tool of nonlinear control system design, the method of control Lyapunov functions (CLFs), has found numerous applications in stabilization problems for continuous-time, discrete-time, and hybrid systems. In this paper, we address the fundamental question: Given a CLF, corresponding to a continuous-time controller with some predefined (e.g., exponential) convergence rate, can the same convergence rate be provided by an event-triggered controller? Under certain assumptions, we give an affirmative answer to this question and show that the corresponding event-based controllers provide positive dwell times between consecutive events. Furthermore, we prove the existence of self-triggered and periodic event-triggered controllers, providing stabilization with a known convergence rate.