Validation of the quasi-steady performance model for pumping airborne wind energy systems
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The quasi-steady performance model (QSM) has been developed specifically for pumping airborne wind energy systems using flexible membrane wings. In this study, we validate this model using a comprehensive set of flight data that includes 87 consecutive pumping cycles and is acquired with the development platform of Kitepower B.V. The aerodynamic properties of the kite are determined using onboard measurements of the relative flow velocity. We found that neglecting the vertical wind component and straightening and slacking motion of the tether lead to substantial errors in the kite velocity calculated using the system model. A reasonable agreement between the QSM simulations and flight data can be obtained by multiplying the kite's drag coefficient by a fudge factor and thereby turning the QSM into a grey-box model. The model accuracy is statistically evaluated as opposed to only evaluating a single pumping cycle per system configuration as done in earlier research.