Super-Resolution Harmonic Retrieval of Non-Circular Signals
Yu Zhang (Nanjing University of Aeronautics and Astronautics)
Yue Wang (George Mason University)
Zhi Tian (George Mason University)
Geert Leus (TU Delft - Signal Processing Systems)
Gong Zhang (Nanjing University of Aeronautics and Astronautics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper proposes a super-resolution harmonic retrieval method for uncorrelated strictly non-circular signals, whose covariance and pseudo-covariance present Toeplitz and Hankel structures, respectively. Accordingly, the augmented covariance matrix constructed by the covariance and pseudo-covariance matrices is not only low rank but also jointly Toeplitz-Hankel structured. To efficiently exploit such a desired structure for high estimation accuracy, we develop a low-rank Toeplitz-Hankel covariance reconstruction (LRTHCR) solution employed over the augmented covariance matrix. Further, we design a fitting error constraint to flexibly implement the LRTHCR algorithm without knowing the noise statistics. In addition, performance analysis is provided for the proposed LRTHCR in practical settings. Simulation results reveal that the LRTHCR outperforms the benchmark methods in terms of lower estimation errors.