Loose bolt localization and torque prediction in a bolted joint using lamb waves and explainable artificial intelligence

Journal Article (2024)
Author(s)

M. Hu (TU Delft - Structural Integrity & Composites, Harbin Engineering University)

Nan Yue (TU Delft - Group Yue)

R.M. Groves (TU Delft - Group Groves)

Research Group
Group Yue
DOI related publication
https://doi.org/10.1177/14759217241241976
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Group Yue
Issue number
2
Volume number
24
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

With the increasing application of artificial intelligence (AI) techniques in the field of structural health monitoring (SHM), there is a growing interest in explaining the decision-making of the black-box models in deep learning-based SHM methods. In this work, we take explainability a step further by using it to improve the performance of AI models. In this work, the results of explainable artificial intelligence (XAI) algorithms are used to reduce the input size of a one-dimensional convolutional neural network (1D-CNN), hence simplifying the CNN structure. To select the most accurate XAI algorithm for this purpose, we propose a new evaluation method, feature sensitivity (FS). Utilizing XAI and FS, a reduced dimension 1D-CNN regression model (FS-X1D-CNN) is proposed to locate and predict the torque of loose bolts in a 16-bolt connected aluminum plate under varying temperature conditions. The results were compared with 1D CNN with raw input vector (RI-1D-CNN) and deep autoencoders-1D-CNN (DAE-1D-CNN). It is shown that FS-X1D-CNN achieves the highest prediction accuracy with 5.95 mm in localization and 0.54 Nm in torque prediction, and converges 10 times faster than RI-1D-CNN and 15 times faster than DAE-1D-CNN, while only using a single lamb wave signal path.

Files

License info not available