Almost all positive continuous linear functionals can be extended
J. van Dobben de Bruyn (TU Delft - Discrete Mathematics and Optimization)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Let F be an ordered topological vector space (over R) whose positive cone F+ is weakly closed, and let E⊆ F be a subspace. We prove that the set of positive continuous linear functionals on E that can be extended (positively and continuously) to F is weak-∗ dense in the topological dual wedge E+′. Furthermore, we show that this result cannot be generalized to arbitrary positive operators, even in finite-dimensional spaces.