Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking

Journal Article (2019)
Author(s)

Kan Wang (Curtin University)

Pei Chen (Beihang University)

Peter J.G. Teunissen (Curtin University, TU Delft - Geoscience and Remote Sensing, TU Delft - Mathematical Geodesy and Positioning)

Research Group
Mathematical Geodesy and Positioning
DOI related publication
https://doi.org/10.3390/s19051066
More Info
expand_more
Publication Year
2019
Language
English
Research Group
Mathematical Geodesy and Positioning
Issue number
5
Volume number
19
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The Japanese Quasi-Zenith Satellite System (QZSS) satellite system has placed in orbit four satellites by October 2017. The Indian Regional Navigation Satellite System (IRNSS) system has launched the new satellite IRNNSS-11 in April 2018, completing seven operational satellites. Together with the GPS block IIF satellites and the Galileo satellites, four different global navigation satellite systems (GNSSs) are providing precise L5 signals on the frequency of 1176.45 MHz. In this contribution, we challenge the strength of the multi-GNSS model by analysing its single-frequency (L5), single-epoch (instantaneous) precise positioning capabilities under high-elevation masking (up to 40 degrees). With more satellites available, multi-GNSS real time kinematic (RTK) positioning is possible using L5-only signals with a high customary elevation mask. This helps to enable positioning in areas with constrained measurement geometry, and could significantly reduce the multipath effects in difficult measurement environments like urban canyons and mountainous areas. In this study, benefiting from the location of the Asia⁻Australia area, instantaneous multi-GNSS L5 RTK analysis is performed with respect to the ambiguity resolution and positioning performance. Formal results are shown and discussed for baselines located in different grids covering Australia, part of the Pacific Ocean, Indian Ocean and Asia, and empirical analysis is given for two baselines in Perth, Australia. Compared to the stand-alone cases, for baselines in Perth, it is shown that combining L5 signals from GPS/Galileo/QZSS/IRNSS significantly improves both the ambiguity success rates (ASR) and the positioning performance under high elevation mask. While the average single-system ASR is under 50% even with a low elevation mask of 10 degrees, combining all the four systems increases the ASR to above 95% under an elevation cut-off angles of 40 degrees. With an elevation mask of 40 degrees, using satellites from one system does not allow for meaningful positioning solutions of more than 8 h within the test day, while mm-to-cm level ambiguity-fixed standard deviations could be obtained based on the positioning results of almost the entire day when combining all the four systems. In addition to that, simulation was also performed for receivers with larger signal standard deviations, i.e., for low-cost receivers or receivers located in environments with larger multipath.