Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods

Journal Article (2005)
Author(s)

Yu Guo Tao (University of Twente)

Wouter K. den Otter (University of Twente)

Johan Padding (University of Twente)

J. K.G. Dhont (Forschungszentrum Jülich)

Wim J. Briels (University of Twente)

Affiliation
External organisation
DOI related publication
https://doi.org/10.1063/1.1940031
More Info
expand_more
Publication Year
2005
Language
English
Affiliation
External organisation
Issue number
24
Volume number
122

Abstract

Recently a microscopic theory for the dynamics of suspensions of long thin rigid rods was presented, confirming and expanding the well-known theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here this theory is put to the test by comparing it against computer simulations. A Brownian dynamics simulation program was developed to follow the dynamics of the rods, with a length over a diameter ratio of 60, on the Smoluchowski time scale. The model accounts for excluded volume interactions between rods, but neglects hydrodynamic interactions. The self-rotational diffusion coefficients Dr (φ) of the rods were calculated by standard methods and by a new, more efficient method based on calculating average restoring torques. Collective decay of orientational order was calculated by means of equilibrium and nonequilibrium simulations. Our results show that, for the currently accessible volume fractions, the decay times in both cases are virtually identical. Moreover, the observed decay of diffusion coefficients with volume fraction is much quicker than predicted by the theory, which is attributed to an oversimplification of dynamic correlations in the theory.

No files available

Metadata only record. There are no files for this record.