Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminate

Journal Article (2018)
Author(s)

Yaolu Liu (TU Delft - Applied Mechanics)

F.P. van der Meer (TU Delft - Applied Mechanics)

L.J. Sluijs (TU Delft - Materials- Mechanics- Management & Design)

Research Group
Applied Mechanics
Copyright
© 2018 Y. Liu, F.P. van der Meer, Lambertus J. Sluys
DOI related publication
https://doi.org/10.1016/j.tafmec.2018.07.004
More Info
expand_more
Publication Year
2018
Language
English
Copyright
© 2018 Y. Liu, F.P. van der Meer, Lambertus J. Sluys
Research Group
Applied Mechanics
Volume number
96
Pages (from-to)
617-630
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The mode-I interlaminar fracture toughness of composite laminates under different loading rates can be measured by the double cantilever beam (DCB) test. It is observed from the DCB test of a unidirectional PEEK/carbon composite laminate that as the loading rate increases from quasi-static to dynamic range: (1) delamination crack growth exhibits a transition from stable to unstable (“stick/slip”) and back to a stable type; (2) the interlaminar fracture toughness is not constant as the loading rate increases. In this paper, two numerical approaches are used to reproduce the experimental observations: a cohesive zone model (CZM) and the interfacial thick level set (ITLS) model. CZM simulations with rate-independent and rate-dependent cohesive laws are carried out. A new version of the ITLS is introduced with a phenomenological relation between crack speed and energy release rate. The simulation results of the CZM and the ITLS model are compared with the real DCB test data to evaluate the capability of these two types of models. It is found that the used CZM can reproduce rate-dependence of the fracture energy, but not the stick/slip behavior. The ITLS can capture the stick/slip behavior, but needs different parameter sets for different loading rates.

Files

Draftpaper_revised_clean.pdf
(pdf | 0.971 Mb)
- Embargo expired in 20-07-2020