An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods

More Info
expand_more

Abstract

The emerging GNSSs make single-frequency (SF) RTK positioning possible. In this contribution two different types of low-cost (few hundred USDs) RTK receivers are analyzed, which can track L1 GPS, B1 BDS, E1 Galileo and L1 QZSS, or any combinations thereof, for a location in Dunedin, New Zealand. These SF RTK receivers can potentially give competitive ambiguity resolution and positioning performance to that of more expensive (thousands USDs) dual-frequency (DF) GPS receivers. A smartphone implementation of one of these SF receiver types is also evaluated. The least-squares variance component estimation (LS-VCE) procedure is first used to formulate a realistic stochastic model, which assures that our receivers at hand can achieve the best possible ambiguity resolution and RTK positioning performance. The best performing low-cost SF RTK receiver types are then assessed against DF GPS receivers and survey-grade antennas. Real data with ionospheric disturbances at low, medium and high levels are analyzed, while making use of the ionosphere-weighted model. It will be demonstrated that when the presence of the residual ionospheric delays increases, instantaneous RTK positioning is not possible for any of the receivers, and a multi-epoch model is necessary to use. It is finally shown that the low-cost SF RTK performance can remain competitive to that of more expensive DF GPS receivers even when the ionospheric disturbance level reaches a Kp-index of 7−, i.e. for a strong geomagnetic storm, for the baseline at hand.