Exponential dichotomies for nonlocal differential operators with infinite range interactions

Journal Article (2021)
Author(s)

W.M. Schouten-Straatman (Universiteit Leiden)

Hermen Jan Hupkes (Universiteit Leiden)

Affiliation
External organisation
DOI related publication
https://doi.org/10.1016/j.jde.2021.08.019
More Info
expand_more
Publication Year
2021
Language
English
Affiliation
External organisation
Volume number
301
Pages (from-to)
353-427

Abstract

We show that functional differential equations of mixed type (MFDEs) with infinite range discrete and/or continuous interactions admit exponential dichotomies, building on the Fredholm theory developed by Faye and Scheel for such systems. For the half line, we refine the earlier approach by Hupkes and Verduyn Lunel. For the full line, we construct these splittings by generalizing the finite-range results obtained by Mallet-Paret and Verduyn Lunel. The finite dimensional space that is ‘missed’ by these splittings can be characterized using the Hale inner product, but the resulting degeneracy issues raise subtle questions that are much harder to resolve than in the finite-range case. Indeed, there is no direct analogue for the standard ‘atomicity’ condition that is typically used to rule out degeneracies, since it explicitly references the smallest and largest shifts.

We construct alternative criteria that exploit finer information on the structure of the MFDE. Our results are optimal when the coefficients are cyclic with respect to appropriate shift semigroups or when the standard positivity conditions typically associated to comparison principles are satisfied. We illustrate these results with explicit examples and counter-examples that involve the Nagumo equation.

No files available

Metadata only record. There are no files for this record.