Operator Lipschitz functions on Banach spaces

Journal Article (2016)
Author(s)

J. Rozendaal (TU Delft - Analysis)

Fedor Sukochev (The University of Newcastle, Australia)

Anna Tomskova (The University of Newcastle, Australia)

Research Group
Analysis
DOI related publication
https://doi.org/10.4064/sm8499-3-2016
More Info
expand_more
Publication Year
2016
Language
English
Research Group
Analysis
Issue number
1
Volume number
232
Pages (from-to)
57-92

Abstract

Let X, Y be Banach spaces and let L(X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on L(X,Y) and apply this theory to obtain commutator estimates of the form

∥f(B)S−Sf(A)∥L(X,Y)≤const∥BS−SA∥L(X,Y)for a large class of functions f, where A∈L(X), B∈L(Y) are scalar type operators and S∈L(X,Y). In particular, we establish this estimate for f(t):=|t| and for diagonalizable operators on X=ℓp and Y=ℓq for p<q.

We also study the estimate above in the setting of Banach ideals in L(X,Y). The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix.

No files available

Metadata only record. There are no files for this record.