3-D stochastic finite elements for thermal creep analysis of piping structures with spatial material inhomogeneities
Y. Appalanaidu (Indian Institute of Technology Madras)
Anindya Roy (TU Delft - Applied Mechanics)
S Gupta (Indian Institute of Technology Madras)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
A stochastic finite element-based methodology is developed for creep damage assessment in pipings carrying high-temperature fluids. The material properties are assumed to be spatially randomly inhomogeneous and are modelled as 3-D non-Gaussian fields. A spectral-based approach for random field discretization that preserves exactly the non-Gaussian characteristics is used in developing the stochastic finite element model. The meshing used in random field discretization is distinct from FE meshing, depends on the correlation characteristics of the random fields and is computationally efficient. The methodology enables estimating the failure probability and the most likely regions of failure in a section of a circular pipe.