Electron transport and room temperature single-electron charging in 10 nm scale PtC nanostructures formed by electron beam induced deposition
Z. A.K. Durrani (Imperial College London)
M. E. Jones (Imperial College London)
C Wang (Imperial College London)
M. Scotuzzi (TU Delft - ImPhys/Charged Particle Optics)
Cornelis Wouter Hagen (TU Delft - ImPhys/Charged Particle Optics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Nanostructures of platinum-carbon nanocomposite material have been formed by electron-beam induced deposition. These consist of nanodots and nanowires with a minimum size ∼20 nm, integrated within ∼100 nm nanogap n-type silicon-on-insulator transistor structures. The nanodot transistors use ∼20 nm Pt/C nanodots, tunnel-coupled to Pt/C nanowire electrodes, bridging the Si nanogaps. Roomerature single-electron transistor operation has been measured, and single-electron current oscillations and 'Coulomb diamonds' observed. In nanowire transistors, the temperature dependence from 290 to 8 K suggests that the current is a combination of thermally activated and tunnelling transport of carriers across potential barriers along the current path, and that the Pt/C is p-type at low temperature.