Experimental study of dynamic response of passive flapping hydrofoil in regular wave

More Info
expand_more

Abstract

The hydrofoil harnesses wave energy and converts it into thrust. In this paper, we present the results of the first experimental study investigating the dynamic behavior of a fully passive foil with spring-loaded pitch and heave in regular waves. Our study shows that the real-time load signal is multi-harmonic with strong superposition, directly proving the robust energy harvesting performance due to the restoring springs. By interpreting the hydrofoil's pose and path from an image sequence captured underwater, we conclude the dynamic evolution of the fully passive hydrofoil interacting with regular waves. The hydrofoil's dynamics exhibit asymmetric surge, pitch, and heave in a motion cycle. Furthermore, we employ a pixel capturing algorithm with self-correction utility to quantify the hydrofoil's forward displacement from the image sequence of the moving carriage. These findings provide valuable insight into the performance and potential of hydrofoils for marine propulsion.

Files

077127_1_5.0157890.pdf
(pdf | 2.17 Mb)
- Embargo expired in 26-01-2024
Unknown license