A probabilistic approach for queue length estimation using license plate recognition data

Considering overtaking in multi-lane scenarios

Journal Article (2025)
Authors

Lyuzhou Luo (Tongji University)

Hao Wu (The Hong Kong Polytechnic University)

Jiahao Liu (Tongji University)

Keshuang Tang (Tongji University)

Chaopeng Tan (TU Delft - Traffic Systems Engineering)

Research Group
Traffic Systems Engineering
To reference this document use:
https://doi.org/10.1016/j.trc.2025.105029
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Traffic Systems Engineering
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Volume number
173
DOI:
https://doi.org/10.1016/j.trc.2025.105029
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Multi-section license plate recognition (LPR) data has emerged as a valuable source for lane-based queue length estimation, providing both input–output information and sampled travel times. However, existing studies often rely on restrictive assumptions such as the first-in-first-out (FIFO) rule and uniform arrival processes, which fail to capture the complexity of multi-lane scenarios, particularly regarding overtaking behaviors and traffic flow variations. To address this issue, we propose a probabilistic approach to derive the stochastic queue length by constructing a conditional probability model of no-delay arrival time (NAT), i.e., the arrival time of vehicles without experiencing any delay, based on multi-section LPR data. First, the NAT conditions for all vehicles are established based on upstream and downstream vehicle departure times and sequences. To reduce the computational dimensionality and complexity, a dynamic programming (DP)-based algorithm is developed for vehicle group partitioning based on potential interactions between vehicles. Then, the conditional probability of NATs of each vehicle group is derived and a Markov Chain Monte Carlo (MCMC) sampling method is employed for calculation. Subsequently, the stochastic queue profile and maximum queue length for each cycle can be derived based on the NATs of vehicles. Eventually, we extend our approach to multi-lane scenarios, where the problem can be converted to a weighted general exact coverage problem and solved by a backtracking algorithm with heuristics. Empirical and simulation experiments demonstrate that our approach outperforms the baseline method, demonstrating significant improvements in accuracy and robustness across various traffic conditions, including different V/C ratios, matching rates, miss detection rates, and FIFO violation rates. The estimated queue profiles demonstrate practical value for offset optimization in traffic signal control, achieving a 6.63% delay reduction compared to the conventional method.

Files

License info not available
warning

File under embargo until 22-08-2025