Unified model of sandwich panel core and faces for aeroelastic optimization
V. Hostinský (TU Delft - External organisation)
J. Sodja (TU Delft - Group Sodja)
Ivo Jebáček (Brno University of Technology)
Jan Navrátil (Brno University of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Metamaterials show a considerable potential in the field of complex optimization of aerospace structures. To fully exploit this potential, the authors present a novel approach to modeling the structural response of a sandwich panel with metamaterial core and CFRP skins that could be used within a single-step optimization process. The proposed approach is illustrated using a model of a panel with aluminum honeycomb core. Obtained results confirm the high potential of the inclusion of the core optimization into the optimization framework. Simple preliminary validation utilizing the finite element analysis presented in the closure of this study yielded a satisfactory agreement with the results of the proposed analytical model. The maximum reached difference of five percent can be attributed to a different shape of deformation of the honeycomb core within the sandwich as opposed to a deformation of the honeycomb core alone.