Finite-temperature interplay of structural stability, chemical complexity, and elastic properties of bcc multicomponent alloys from ab initio trained machine-learning potentials

Journal Article (2021)
Author(s)

Konstantin Gubaev (University of Stuttgart)

Yuji Ikeda (University of Stuttgart)

Ferenc Tasnádi (Linköping University)

Jörg Neugebauer (Max-Planck-Institut für Eisenforschung)

Alexander Shapeev (Skolkovo Institute of Science and Technology)

Blazej Grabowski (University of Stuttgart)

F.H.W. Körmann (Max-Planck-Institut für Eisenforschung, TU Delft - Team Marcel Sluiter)

Research Group
Team Marcel Sluiter
Copyright
© 2021 Konstantin Gubaev, Yuji Ikeda, Ferenc Tasnádi, Jörg Neugebauer, Alexander V. Shapeev, Blazej Grabowski, F.H.W. Körmann
DOI related publication
https://doi.org/10.1103/PhysRevMaterials.5.073801
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 Konstantin Gubaev, Yuji Ikeda, Ferenc Tasnádi, Jörg Neugebauer, Alexander V. Shapeev, Blazej Grabowski, F.H.W. Körmann
Research Group
Team Marcel Sluiter
Issue number
7
Volume number
5
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

An active learning approach to train machine-learning interatomic potentials (moment tensor potentials) for multicomponent alloys to ab initio data is presented. Employing this approach, the disordered body-centered cubic (bcc) TiZrHfTax system with varying Ta concentration is investigated via molecular dynamics simulations. Our results show a strong interplay between elastic properties and the structural ω phase stability, strongly affecting the mechanical properties. Based on these insights we systematically screen composition space for regimes where elastic constants show little or no temperature dependence (elinvar effect).

Files

License info not available