BoundED
Neural boundary and edge detection in 3D point clouds via local neighborhood statistics
Lukas Bode (Universität Bonn)
Michael Weinmann (TU Delft - Computer Graphics and Visualisation)
Reinhard Klein (Universität Bonn)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Extracting high-level structural information from 3D point clouds is challenging but essential for tasks like urban planning or autonomous driving requiring an advanced understanding of the scene at hand. Existing approaches are still not able to produce high-quality results consistently while being fast enough to be deployed in scenarios requiring interactivity. We propose to utilize a novel set of features describing the local neighborhood on a per-point basis via first and second order statistics as input for a simple and compact classification network to distinguish between non-edge, sharp-edge, and boundary points in the given data. Leveraging this feature embedding enables our algorithm to outperform the state-of-the-art technique PCEDNet in terms of quality and processing time while additionally allowing for the detection of boundaries in the processed point clouds.