Gini estimation under infinite variance

Journal Article (2018)
Author(s)

A. Fontanari (TU Delft - Numerical Analysis)

P. Cirillo (TU Delft - Applied Probability)

Research Group
Numerical Analysis
Copyright
© 2018 A. Fontanari, P. Cirillo
DOI related publication
https://doi.org/10.1016/j.physa.2018.02.102
More Info
expand_more
Publication Year
2018
Language
English
Copyright
© 2018 A. Fontanari, P. Cirillo
Research Group
Numerical Analysis
Volume number
502
Pages (from-to)
256-269
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We study the problems related to the estimation of the Gini index in presence of a fat-tailed data generating process, i.e. one in the stable distribution class with finite mean but infinite variance (i.e. with tail index α∈(1,2)). We show that, in such a case, the Gini coefficient cannot be reliably estimated using conventional nonparametric methods, because of a downward bias that emerges under fat tails. This has important implications for the ongoing discussion about economic inequality.We start by discussing how the nonparametric estimator of the Gini index undergoes a phase transition in the symmetry structure of its asymptotic distribution, as the data distribution shifts from the domain of attraction of a light-tailed distribution to that of a fat-tailed one, especially in the case of infinite variance. We also show how the nonparametric Gini bias increases with lower values of α. We then prove that maximum likelihood estimation outperforms nonparametric methods, requiring a much smaller sample size to reach efficiency. Finally, for fat-tailed data, we provide a simple correction mechanism to the small sample bias of the nonparametric estimator based on the distance between the mode and the mean of its asymptotic distribution.

Files

License info not available