Reference-Free Calibration in Sensor Networks

Journal Article (2018)
Author(s)

R.T. Rajan (TU Delft - Signal Processing Systems, Holst Centre)

R Van Schaijk (Holst Centre)

Anup Das (Holst Centre, Drexel University)

J.P.A. Romme (Holst Centre)

F. Pasveer (Holst Centre)

Research Group
Signal Processing Systems
DOI related publication
https://doi.org/10.1109/LSENS.2018.2866627
More Info
expand_more
Publication Year
2018
Language
English
Research Group
Signal Processing Systems
Issue number
3
Volume number
2
Pages (from-to)
1-4

Abstract

Sensor calibration is one of the fundamental challenges in large-scale Internet of Things networks. In this article, we address the challenge of reference-free calibration of a densely deployed sensor network. Conventionally, to calibrate an in-place sensor network (or sensor array), a reference is arbitrarily chosen with or without prior information on sensor performance. However, an arbitrary selection of a reference could prove fatal, if an erroneous sensor is inadvertently chosen. To avert single point of dependence, and to improve estimator performance, we propose unbiased reference-free algorithms. Although our focus is on reference-free solutions, the proposed framework allows the incorporation of additional references, if available. We show, with the help of simulations, that the proposed solutions achieve the derived statistical lower bounds asymptotically. In addition, the proposed algorithms show improvements on real-life datasets, as compared to prevalent algorithms.

No files available

Metadata only record. There are no files for this record.