A novel modelling approach for condensing boilers based on hybrid dynamical systems

More Info
expand_more

Abstract

Condensing boilers use waste heat from flue gases to pre-heat cold water entering the boiler. Flue gases are condensed into liquid form, thus recovering their latent heat of vaporization, which results in as much as 10%–12% increase in efficiency. Modeling these heat transfer phenomena is crucial to control this equipment. Despite the many approaches to the condensing boiler modeling, the following shortcomings are still not addressed: thermal dynamics are oversimplified with a nonlinear efficiency curve (which is calculated at steady-state); the dry/wet heat exchange is modeled in a fixed proportion. In this work we cover these shortcomings by developing a novel hybrid dynamic model which avoids the static nonlinear efficiency curve and accounts for a time-varying proportion of dry/wet heat exchange. The procedure for deriving the model is described and the efficiency of the resulting condensing boiler is shown.