Interaction-Free Measurement with Electrons
Amy E. Turner (University of Oregon)
Cameron W. Johnson (University of Oregon)
Pieter Kruit (TU Delft - ImPhys/Microscopy Instrumentation & Techniques)
Benjamin J. McMorran (University of Oregon)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Here, we experimentally demonstrate interaction-free measurements with electrons using a novel electron Mach-Zehnder interferometer. The flexible two-grating electron interferometer is constructed in a conventional transmission electron microscope and achieves high contrast in discrete output detectors, tunable alignment with independently movable beam splitters, and scanning capabilities for imaging. With this path-separated electron interferometer, which closely matches theoretical expectations, we demonstrate electron interaction-free measurements with an efficiency of 14±1%. Implementing this quantum protocol in electron imaging opens a path toward interaction-free electron microscopy.