Investigation on Thermal Properties of Crosslinked Epoxy Resin by MD Simulation

More Info
expand_more

Abstract

Behavior of epoxy resin is critical for performance and reliability of electronic packages. The ability to predict properties of cross linked epoxy resin prior to laboratory synthesis will facilitate the materials design. Theoretical studies in this field face a big challenge because there is no conventional way to build atomistic models of specific polymers, which form a network. Molecular dynamics (MD) is a potentially powerful method that can simulate the materials at atomic scale and it can be used to describe the performance and properties of a wide range of systems. In the present work, the properties of the cross-linked epoxy resin compound were predicted by MD simulations. Periodic amorphous structures of the cross-linked epoxy resin compound were simulated at various temperatures. The correlation of the glass transition temperature (Tg) and properties of the cross-linked epoxy resin coumpound were investigated. The results show that Tg can be estimated by the plot of densities and non-bond energy at different temperatures. The Tg predicted was in agreement with the experimental data, which shows that MD simulation is an effective tool to estimate the properties of crosslinked epoxy resin.