Partitioning Green and Blue Evapotranspiration by Improving Budyko Equation Using Remote Sensing Observations in an Arid/Semi-Arid Inland River Basin in China

More Info
expand_more

Abstract

The estimation of water requirements constitutes a critical prerequisite for delineating water scarcity hotspots and mitigating intersectoral competition, particularly in endorheic basins in arid or semi-arid regions where hydrological closure exacerbates resource allocation conflicts. Under conditions of water scarcity, water supplied locally by precipitation and shallow groundwater bodies should be taken into account to estimate the net water requirements to be met with water conveyed from off-site sources. This concept is embodied in the distinction of blue ET (BET) and green ET (GET). In this study, the Budyko hypothesis (BH) method was optimized to partition the total ET into GET and BET during 2001–2018 in the Heihe River Basin. In this region, a better knowledge of net water requirements is even more important due to water allocation policies which reduced water supply to irrigated lands in the last 15 years. This study proposes a modified BH method based on a new vegetation-specific parameter ((Formula presented.)) which was optimized for different vegetation types using precipitation and actual ET data obtained from remote sensing observations. The results show that the BH method partitioned GET and BET reasonably well, with a percent bias of 23.8% and 37.4% and a root mean square error of 84.8 mm/a and 113.6 mm/a, respectively, when compared with reported data, which are superior to that of the precipitation deficit and soil water balance methods. A sensitivity experiment showed that the BH method exhibits a low sensitivity to uncertainties of input data. The results documented differences in the contribution of GET and BET to total ET across different land cover types in the Heihe River Basin. As expected, rainfed forest and grassland ecosystems are predominantly governed by GET, with 81.3% and 87.2% of total ET, respectively. In contrast, croplands and shrublands are primarily regulated by BET, with contributions of 61.5% and 84.3% to total ET. The improved BH method developed in this study paves the way for further analyses of the net water requirements in arid and semi-arid regions.

Files

Remotesensing-17-00612-v2.pdf
(pdf | 4.74 Mb)
License info not available
warning

File under embargo until 11-08-2025