A numerical study of unsteady cavitation on a hydrofoil by les and URANS method
Zi Ru Li (Wuhan University of Technology)
Ming Zhang (Wuhan University of Technology)
Wei Dong He (Wuhan University of Technology)
Tom J.C. van Terwisga (Maritime Research Institute Netherlands (MARIN), TU Delft - Ship Hydromechanics and Structures)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper, the unsteady cavitation phenomena on a NACA0015 hydrofoil is numerically simulated by unsteady Reynolds-Averaged Navier-Stokes (URANS) method and Large Eddy Simulation (LES) in single-fluid approaches to multiphase modelling, respectively. It is observed that the large-scale structures and characteristic periodic shedding predicted by the URANS with the modified SST k-ω turbulence model show a good qualitative match with the experimental observations but with quantitative discrepancies, such as a different cavity length and volume, and a different location of shedding. Compared to the URANS results, the LES results reproduce more details of unsteady dynamics with an improved quantitative agreement.