The effect of thermal boundary conditions on forced convection heat transfer to fluids at supercritical pressure

Journal Article (2016)
Author(s)

H Nemati (TU Delft - Energy Technology)

Ashish Patel (TU Delft - Energy Technology)

Bendiks Jan Boersma (TU Delft - Process and Energy, TU Delft - Energy Technology)

R. Pecnik (TU Delft - Energy Technology)

Research Group
Energy Technology
DOI related publication
https://doi.org/10.1017/jfm.2016.411
More Info
expand_more
Publication Year
2016
Language
English
Research Group
Energy Technology
Volume number
800
Pages (from-to)
531-556

Abstract

We use direct numerical simulations to study the effect of thermal boundary conditions on developing turbulent pipe flows with fluids at supercritical pressure. The Reynolds number based on pipe diameter and friction velocity at the inlet is Reτ0=360 and Prandtl number at the inlet is Pr0=3.19. The thermodynamic conditions are chosen such that the temperature range within the flow domain incorporates the pseudo-critical point where large variations in thermophysical properties occur. Two different thermal wall boundary conditions are studied: one that permits temperature fluctuations and one that does not allow temperature fluctuations at the wall (equivalent to cases where the thermal effusivity ratio approaches infinity and zero, respectively). Unlike for turbulent flows with constant thermophysical properties and Prandtl numbers above unity – where the effusivity ratio has a negligible influence on heat transfer – supercritical fluids shows a strong dependency on the effusivity ratio. We observe a reduction of 7 % in Nusselt number when the temperature fluctuations at the wall are suppressed. On the other hand, if temperature fluctuations are permitted, large property variations are induced that consequently cause an increase of wall-normal velocity fluctuations very close to the wall and thus an increased overall heat flux and skin friction.

No files available

Metadata only record. There are no files for this record.