Correction Factor on Dynamic Force in a Marsh Funnel Test for Tunneling
Dongzhu Zheng (Universiteit Gent)
Adam Bezuijen (Universiteit Gent)
Arnold Talmon (TU Delft - Offshore and Dredging Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents an improvement on a previous model for predicting the Marsh funnel (MF) test that is used in slurry shield tunneling for evaluating the rheological properties of bentonite slurries. The improvement focuses on the prediction of the dynamic part for fluids with small MF times. The velocity profile of the Herschel-Bulkley fluid in a laminar pipe flow condition is first investigated and a correction factor is introduced in the improved model. Comparisons of results from experiments and calculations with the previous model confirm the improved performance over the existing model. The rheological parameters obtained from the improved model show good resemblance to those obtained from a laboratory viscometer. The work also provides a reference to similar applications such as fluid transportation through pipelines where dynamic pressure dominates and therefore should be correctly predicted considering its velocity profile in a laminar condition.