Fast Multiagent Formation Stabilization with Sparse Universally Rigid Frameworks
Z. Li (TU Delft - Signal Processing Systems)
G.J.T. Leus (TU Delft - Signal Processing Systems)
R.T. Rajan (TU Delft - Signal Processing Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Affine formation control (AFC) is a distributed networked control system that has recently received increasing attention in various applications. AFC is typically achieved using a generalized consensus system where the stress matrix, which encodes the graph structure, is used instead of a graph Laplacian. Universally rigid frameworks (URFs) guarantee the existence of the stress matrix and have thus become the guideline for such a network design. In this work, we propose a convex optimization framework to design the stress matrix for AFC without predefining a rigid graph. We aim to find a resulting network with a reduced number of communication links, but still with a fast convergence speed. We show through simulations that our proposed solutions can yield a more sparse graph, while admitting a faster convergence compared to the state-of-the-art solutions.
Files
File under embargo until 15-05-2026