Dual-input photovoltaic system based on parallel z-source inverters
Mahdi Shahparasti (University of Southern Denmark)
Mehdi Savaghebi (University of Southern Denmark)
Ebrahim Adabi (TU Delft - Intelligent Electrical Power Grids)
Thomas Ebel (University of Southern Denmark)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper aims to present a new structure of the parallel Z-source inverters (ZSIs) for dual-input single-phase grid-connected photovoltaic (PV) systems. The ZSI is a single-stage buck-boost converter that uses an inductor-capacitor network between the inverter bridge and the PV string and follows the maximum power point by applying the shoot-through vector. Therefore, a DC/DC converter is no longer needed to track the maximum power point, and the cost and complexity of the power conditioning system (PCS) are reduced. For controlling the proposed PCS, a cascade control structure is employed in this paper. The inner current loop injects the maximum active power with unity power factor sinusoidal current to the grid. The outer capacitor voltage loop is applied to control capacitors voltages in the Z-source networks. Additionally, an enhanced dual-string maximum power point tracking (eDS-MPPT) method is proposed to find MPPs with minimum burden competitional. The eDS-MPPT does not need the PVs voltages measurements compared to other MPPT methods. The simulation results confirm the accuracy of the performance of the system.