Mode I fracture behavior of glass fiber composite-steel bonded interface

Experiments and CZM

Journal Article (2024)
Author(s)

Pei He (TU Delft - Steel & Composite Structures)

M. Moreira Arouche (TU Delft - Steel & Composite Structures)

Mathieu Koetsier (TU Delft - Steel & Composite Structures)

M. Pavlovic (TU Delft - Steel & Composite Structures)

Research Group
Steel & Composite Structures
Copyright
© 2024 P. He, M. Moreira Arouche, M. Koetsier, M. Pavlovic
DOI related publication
https://doi.org/10.1016/j.compstruct.2023.117814
More Info
expand_more
Publication Year
2024
Language
English
Copyright
© 2024 P. He, M. Moreira Arouche, M. Koetsier, M. Pavlovic
Research Group
Steel & Composite Structures
Volume number
330
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Debonding is characterized as the governing failure mode in the innovative wrapped composite joints made with glass fiber composite material wrapped around steel hollow sections without welding. The prerequisite for predicting debonding failure of wrapped composite joints is to obtain fracture behavior of the composite-steel bonded interface. The mode I fracture behavior of the bonded interface was experimentally investigated using glass fiber composite-steel double cantilever beam (DCB) specimens. The crack length a and the crack tip opening displacement (CTOD) during the test were accurately measured by analyzing the digital image correlation (DIC) data while the strain energy release rate (SERR) was calculated through the extended global method (EGM). The cohesive zone modeling (CZM) was utilized in the finite element model with the proposal of a four-linear traction-separation law to simulate the mode I fracture process. An approach is introduced to determine the critical stages of the proposed four-linear cohesive law by combining accurate measurements of crack length a and CTOD, along with SERR values. The validity of the four-linear cohesive law and the introduced approach to determine the critical stages were confirmed by good agreement in both global and local behavior between the testing and the FEA results.