Computational graph pangenomics

A tutorial on data structures and their applications

Journal Article (2022)
Author(s)

J.A. Baaijens (TU Delft - Pattern Recognition and Bioinformatics, Harvard University)

Paola Bonizzoni (University of Milano-Bicocca)

Christina Boucher (University of Florida)

Gianluca Della Vedova (University of Milano-Bicocca)

Yuri Pirola (University of Milano-Bicocca)

Raffaella Rizzi (University of Milano-Bicocca)

Jouni Sirén (University of California)

Research Group
Pattern Recognition and Bioinformatics
Copyright
© 2022 J.A. Baaijens, Paola Bonizzoni, Christina Boucher, Gianluca Della Vedova, Yuri Pirola, Raffaella Rizzi, Jouni Sirén
DOI related publication
https://doi.org/10.1007/s11047-022-09882-6
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 J.A. Baaijens, Paola Bonizzoni, Christina Boucher, Gianluca Della Vedova, Yuri Pirola, Raffaella Rizzi, Jouni Sirén
Research Group
Pattern Recognition and Bioinformatics
Issue number
1
Volume number
21
Pages (from-to)
81-108
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Computational pangenomics is an emerging research field that is changing the way computer scientists are facing challenges in biological sequence analysis. In past decades, contributions from combinatorics, stringology, graph theory and data structures were essential in the development of a plethora of software tools for the analysis of the human genome. These tools allowed computational biologists to approach ambitious projects at population scale, such as the 1000 Genomes Project. A major contribution of the 1000 Genomes Project is the characterization of a broad spectrum of genetic variations in the human genome, including the discovery of novel variations in the South Asian, African and European populations—thus enhancing the catalogue of variability within the reference genome. Currently, the need to take into account the high variability in population genomes as well as the specificity of an individual genome in a personalized approach to medicine is rapidly pushing the abandonment of the traditional paradigm of using a single reference genome. A graph-based representation of multiple genomes, or a graph pangenome, is replacing the linear reference genome. This means completely rethinking well-established procedures to analyze, store, and access information from genome representations. Properly addressing these challenges is crucial to face the computational tasks of ambitious healthcare projects aiming to characterize human diversity by sequencing 1M individuals (Stark et al. 2019). This tutorial aims to introduce readers to the most recent advances in the theory of data structures for the representation of graph pangenomes. We discuss efficient representations of haplotypes and the variability of genotypes in graph pangenomes, and highlight applications in solving computational problems in human and microbial (viral) pangenomes.