A Mobility Management Architecture for Seamless Delivery of 5G-IoT Services

More Info
expand_more

Abstract

Mobile Edge Computing (MEC) and Network Slicing techniques have a potential to augment 5G-IoT network services. Telecommunication operators use a diverse set of radio access technologies to provide services for users. Mobility management is one such service that needs attention for new 5G deployments. The QoS requirements in 5G networks are user specific. Network slicing along with MEC has been promoted as a key enabler for such on-demand service schemes. This paper focuses on radio resource access across heterogeneous networks for mobile roaming users. A unified service architecture is proposed enabling seamless handover between a 5G (New Generation Core) service and a 4G (Evolved Packet Core) service via the network slicing paradigm. An identifier-locator (I-L) concept that allows active source-IP sessions is used to handle the seamless hand-over. Signaling costs, service disruptions and other resource reservation requirements are considered in the evaluation to assure that profit for mobile edge operators is achieved. Simulation experiments are considered to provide performance comparisons against the state-of-the-art Distributed Mobility Management Protocol (DMM).

Files