On masas in q-deformed von neumann algebras

Journal Article (2019)
Author(s)

M. Caspers (Universiteit Utrecht, TU Delft - Analysis)

Adam Skalski (Polish Academy of Sciences)

Mateusz Wasilewski (Katholieke Universiteit Leuven, Polish Academy of Sciences)

Research Group
Analysis
DOI related publication
https://doi.org/10.2140/pjm.2019.302.1
More Info
expand_more
Publication Year
2019
Language
English
Research Group
Analysis
Issue number
1
Volume number
302
Pages (from-to)
1-21

Abstract

We study certain q-deformed analogues of the maximal abelian subalgebras of the group von Neumann algebras of free groups. The radial subalgebra is defined for Hecke deformed von Neumann algebras of the Coxeter group (Z=2Z)k and shown to be a maximal abelian subalgebra which is singular and with Pukanszky invariant [∞]. Further all nonequal generator masas in the q-deformed Gaussian von Neumann algebras are shown to be mutually nonintertwinable.

No files available

Metadata only record. There are no files for this record.