Silicon dioxide photonic mems

Chip-to-chip alignment with positionable waveguides

Doctoral Thesis (2019)
Author(s)

TJ Peters (TU Delft - Micro and Nano Engineering)

Research Group
Micro and Nano Engineering
Copyright
© 2019 T.J. Peters
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 T.J. Peters
Research Group
Micro and Nano Engineering
ISBN (print)
978-94-6366-139-3
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

THIS thesis describes the development of a positionable waveguide array realized in a silicon nitride / silicon dioxide (Si3N4 core / SiO2 cladding) photonic platform. The positionable waveguide array is the heart of a novel alignment approach for high precision multi-channel chip-to-chip interconnects. This alignment approach enables submicron accurate alignment of an Indium Phosphide (InP) Photonic Integrated Circuit (PIC) and a TriPleX interposer chip. Mechanically flexible waveguides with integrated alignment functionality are realized within the TriPleX interposer chip. Compared to competing alignment approaches, the proposed concept targets higher accuracy and precision and allows for an increased level of automation to lower assembly time and cost. The final alignment of the waveguides is achieved in two stages. In the first stage, both chips are flip-chip bonded on a common substrate. The result of this first stage is a coarse alignment of the waveguides of both chips, as well as mechanical fixation and electrical connection of both chips. In the second stage, integrated alignment functionality of the positionable waveguide array within the TriPleX interposer chip is used to optimally align the interposer waveguides with the waveguides of the InP PIC. Once aligned, the alignment function of the positionable waveguide array has served its purpose and the positionable waveguide array is mechanically fixed, providing an optimal alignment for the lifetime of the PIC.

Files

License info not available