A discrete framework for the interpolation of Banach spaces
N. Lindemulder (TU Delft - Analysis, Karlsruhe Institut für Technologie)
Emiel Lorist (TU Delft - Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We develop a discrete framework for the interpolation of Banach spaces, which contains the well-known real and complex interpolation methods, but also more recent methods like the Rademacher, γ- and ℓq-interpolation methods. Our framework is based on a sequential structure imposed on a Banach space, which allows us to deduce properties of interpolation methods from properties of sequential structures. Our framework has a formulation modelled after both the real and the complex interpolation methods. This enables us to extend various results, previously known only for either the real or the complex interpolation method, to all interpolation methods that fit into our framework. As applications, we prove an interpolation result for analytic operator families and an interpolation result for intersections.