Development of a Knitted Strain Sensor for Health Monitoring Applications †
B. Bozali (TU Delft - Materializing Futures)
Dr. S (Sepideh) Ghodrat (TU Delft - Materializing Futures)
K.M.B. Jansen (TU Delft - Materializing Futures)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
As an emerging technology, smart textiles have attracted attention for rehabilitation purposes to monitor heart rate, blood pressure, breathing rate, body posture and limb movements. Compared with traditional sensors, knitted sensors constructed from conductive yarns are breathable, stretchable and washable, and therefore, provide more comfort to the body and can be used in everyday life. In this study, knitted strain sensors were produced that are linear with up to 40% strain, sensitivity of 1.19 and hysteresis of 1.2% in absolute values, and hysteresis of 0.03 when scaled to the working range of 40%. The developed sensor was integrated into a wearable wrist-glove system for finger and wrist monitoring. The results show that the wearable was able to detect different finger angles and positions of the wrist.