A Fast Smoothing-Based Algorithm to Generate l∞-Norm Constrained Signals for Multivariable Experiment Design
Nic Dirkx (ASML)
Marcel Bosselaar (Eindhoven University of Technology)
T. Oomen (Eindhoven University of Technology, TU Delft - Team Jan-Willem van Wingerden)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Handling peak amplitude constraints, or equivalently l∞-norm constraints, is an important application demand in experiment design for system identification. The aim of this letter is to present a method for the design of excitation signals with prescribed power spectrum under l∞-norm constraints for systems with many inputs and outputs. The method exploits an exponential smoothing function in an iterative algorithm. Fast convergence is achieved by a computationally efficient construction of the gradient and the Hessian matrix. Experimental results show excellent convergence behavior that overcomes local minima, while significantly reducing computation time compared to existing techniques.