Assessing the Impact of Climate Change on Future Water Demand using Weather Data
Diana Fiorillo (Università degli Studi di Napoli Federico II)
Zoran Kapelan (TU Delft - Sanitary Engineering)
Maria Xenochristou (Stanford University)
Francesco De Paola (Università degli Studi di Napoli Federico II)
Maurizio Giugni (Università degli Studi di Napoli Federico II)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Assessing the impact of climate change on water demand is a challenging task. This paper proposes a novel methodology that quantifies this impact by establishing a link between water demand and weather based on climate change scenarios, via Coupled General Circulation Models. These models simulate the response of the global climate system to increasing greenhouse gas concentrations by reproducing atmospheric and ocean processes. In order to establish the link between water demand and weather, Random Forest models based on weather variables were used. This methodology was applied to a district metered area in Naples (Italy). Results demonstrate that the total district water demand may increase by 9–10% during the weeks with the highest temperatures. Furthermore, results show that the increase in water demand changes depending on the social characteristics of the users. The water demand of employed users with high education may increase by 13–15% when the highest temperatures occur. These increases can seriously affect the capacity and operation of existing water systems.