Slicing for AI
An Online Learning Framework for Network Slicing Supporting AI Services
M. Helmy (Qatar University)
A. A. Abdellatif (Center for Telecommunications and Multimedia, INESC TEC)
N. Mhaisen (TU Delft - Networked Systems)
A. Mohamed (Qatar University)
A. Erbad (Qatar University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The forthcoming 6G networks will embrace a new realm of AI-driven services that requires innovative network slicing strategies, namely slicing for AI, which involves the creation of customized network slices to meet Quality of Service (QoS) requirements of diverse AI services. This poses challenges due to time-varying dynamics of users’ behavior and mobile networks. Thus, this paper proposes an online learning framework to determine the allocation of computational and communication resources to AI services, to optimize their accuracy as one of their unique key performance indicators (KPIs), while abiding by resources, learning latency, and cost constraints. We define a problem of optimizing the total accuracy while balancing conflicting KPIs, prove its NP-hardness, and propose an online learning framework for solving it in dynamic environments. We present a basic online solution and two variations employing a pre-learning elimination method for reducing the decision space to expedite the learning. Furthermore, we propose a biased decision space subset selection by incorporating prior knowledge to enhance the learning speed without compromising performance and present two alternatives of handling the selected subset. Our results depict the efficiency of the proposed solutions in converging to the optimal decisions, while reducing decision space and improving time complexity. Additionally, our solution outperforms State-of-the-Art techniques in adapting to diverse environmental dynamics and excels under varying levels of resource availability.
Files
File under embargo until 05-06-2026