A Short Note on Solving Partial Differential Equations Using Convolutional Neural Networks
Viktor Grimm (University of Cologne)
A. Heinlein (TU Delft - Numerical Analysis)
A. Klawonn (University of Cologne)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Solving partial differential equations (PDEs) is a common task in numerical mathematics and scientific computing. Typical discretization schemes, for example, finite element (FE), finite volume (FV), or finite difference (FD) methods, have the disadvantage that the computations have to be repeated once the boundary conditions (BCs) or the geometry change slightly; typical examples requiring the solution of many similar problems are time-dependent and inverse problems or uncertainty quantification.