Droplet motion with contact-line friction
long-time asymptotics in complete wetting
Lorenzo Giacomelli (Sapienza University of Rome)
M.V. Gnann (TU Delft - Mathematical Physics)
Dirk Peschka (Weierstraß-Institut)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We consider the thin-film equation for a class of free boundary conditions modelling friction at the contact line, as introduced by E and Ren. Our analysis focuses on formal long-time asymptotics of solutions in the perfect wetting regime. In particular, through the analysis of quasi-self-similar solutions, we characterize the profile and the spreading rate of solutions depending on the strength of friction at the contact line, as well as their (global or local) corrections, which are due to the dynamical nature of the free boundary conditions. These results are complemented with full transient numerical solutions of the free boundary problem.